设为首页 | 加入收藏
首页
 



您当前的位置: 首页» 电子期刊
中国主要城市群人口迁移倾向研究——基于百度指数的应用
作者: 肖周燕, 李慧慧
单位: 首都经济贸易大学 劳动经济学院, 北京 100070
关键词: 城市群; 迁移倾向; 预测
分类号:C922
出版年,卷(期):页码:2021(04):22-36
摘要:
互联网的发展以及大数据的开发和应用为研究城市间的人口迁移流动提供了可能。利用网络用户搜索信息行为数据,构造人口迁移倾向指标,在分析中国三大城市群城际人口迁移倾向概率和方向基础上,利用马尔科夫链对人口迁移倾向概率进行预测,以此对城市群未来城际人口迁移态势作出判断。研究发现,粤港澳大湾区和长三角城际人口迁入迁出倾向活跃,它们依然是目前乃至以后中国人口迁移活跃地区;京津冀城际人口迁移倾向活跃程度明显低于长三角和粤港澳大湾区,北京与周边城市虽然物理距离比较近,但迁移倾向关联度不高。长三角城市群的上海、南京、舟山等地,粤港澳大湾区的珠海、香港、深圳、广州、澳门、惠州和中山以及京津冀城市群的天津将是中国未来人口迁移的主要目的地。

The development of the Internet and the application of big data have made it possible to study the population migration between cities. Based on the analysis of the probability and direction of the intercity population migration in the three major urban agglomerations of China, this paper constructs the index of the population migration propensity according to the information searching behavior data of network users and predicts the probability of population migration by using Markov chain, so as to judge the future intercity population migration trend in urban agglomerations. The results show that Guangdong-Hong Kong-Macao Greater Bay Area and Yangtze River Delta Urban Agglomerations are still the active areas of population migration in China at present and in the future. The active degree of population migration tendency of Beijing-Tianjin-Hebei Urban Agglomeration is lower than that in Yangtze River Delta Region and Guangdong-Hong Kong-Macao Greater Bay Area, Although the physical distance between Beijing and surrounding cities is relatively close, the correlation degree of migration tendency is not high. In the future, the cities of Shanghai, Nanjing and Zhoushan in Yangtze River Delta Urban Agglomerations, Zhuhai, Hong Kong, Shenzhen, Guangzhou, Macao, Huizhou and Zhongshan in the Guangdong-Hong Kong-Macao Greater Bay Area, and Tianjin in the Beijing-Tianjin-Hebei Urban Agglomeration will be the main destinations of China’s population migration.
基金项目:
国家社会科学基金重大项目 “中国主要城市群人口集聚与空间格局优化研究” (18ZDA131)
作者简介:
肖周燕, 首都经济贸易大学劳动经济学院教授; 李慧慧, 首都经济贸易大学劳动经济学院博士研究生
参考文献:

欢迎阅读《人口与经济》,您是本文的第位浏览者。

版权所有:《人口与经济》编辑部
技术支持:北京通元动力软件技术有限责任公司